

Fig. 1. $\left[\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{O}\right)_{7}\right]\left[\mathrm{Cd}_{2} \mathrm{Br}_{6}\right]$ viewed down the a axis.
Discussion. Crystals of the title compound were formed when a flask containing a saturated solution of $\mathrm{CaBr} 2: \mathrm{CdBr}_{2}$ in equilibrium with the solid was opened to the air. The original crystals which dissolved at the same time have the composition $\mathrm{CaCd}_{2} \mathrm{Br}_{6} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (Balarew, Duhlev \& Panaiotov, 1982). The bonding of

Ca to water and Cd to Br in $\left[\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{O}\right)_{7}\right]\left[\mathrm{Cd}_{2} \mathrm{Br}_{6}\right]$ confirms the predictions of Balarew \& Duhlev (1984) whose work prompted the present study. The interatomic distances are close to those expected. The $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{O}\right)_{7}^{2+}$ and infinite chain $\mathrm{Cd}_{2} \mathrm{Br}_{6}^{2-}$ ions are linked by hydrogen bonds with $\mathrm{O} \cdots \mathrm{Br}$ distances ranging from 3.30 to over $3.60 \AA$.

We wish to thank the Natural Sciences and Engineering Research Council of Canada for an operating grant and Professor Balarew and Dr Duhlev for suggesting the project.

References

Balarew, C. \& Duhlev, R. (1984). J. Solid State Chem. 55, 1-6.
Balarew, C., Duhlev, R. \& Panalotov, V. (1982). Bulg. Acad. Sci. Commun. Dep. Chem. 15, 187-195.
Hall, S. R. (1981). Acta Cryst. A37, 517-525.
International Tables for X-ray Crystallography (1974). Vol. IV, Table 2.2A. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Acta Cryst. (1986). C42, 774-776

Structure of Lead(II) Copper(I) Arsenate(V)

By F. Pertlik
Institut für Mineralogie und Kristallographie der Universität Wien, Dr Karl-Lueger-Ring 1, A-1010 Vienna, Austria

(Received 22 July 1985; accepted 21 February 1986)

Abstract

PbCuAsO}_{4}, M_{r}=409.65\), triclinic, $P \overline{1}, a$ $=4.832$ (1), $\quad b=5.837$ (1), $\quad c=7.995$ (2) $\AA, \quad \alpha=$ 78.68 (2), $\quad \beta=74.95$ (1), $\quad \gamma=84.04$ (1) ${ }^{\circ}, \quad V=$ $213.2 \AA^{3}, Z=2, \quad D_{x}=6.382 \mathrm{Mg} \mathrm{m}^{-3}$, Мо $K \alpha, \lambda=$ $0.710688 \AA, \mu=50.3 \mathrm{~mm}^{-1}, F(000)=352$, room temperature, $R=0.030$ for 1039 observed reflections up to $\sin \theta / \lambda=0.70 \AA^{-1} . \mathrm{PbCuAsO}_{4}$ crystallizes in a network structure built up by three characteristic cation coordination polyhedra. The Pb atom is irregularly $[4+2]$ coordinated by six O atoms. The monovalent Cu atom has a linear [2] coordination, and the pentavalent As atom has the usual tetrahedral [4] coordination by O atoms. $\mathrm{PbCuAsO}{ }_{4}$ was synthesized under hydrothermal conditions [490 (5) K, saturation vapour pressure].

0108-2701/86/070774-03\$01.50

Introduction. The oxidation state of arsenic in oxygen compounds indicates in mineralogy the conditions of formation of various ore deposits and their weathering during geologic periods. Therefore investigations within the system $\mathrm{PbO}, \mathrm{CuO}, \mathrm{As}_{2} \mathrm{O}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$ under hydrothermal conditions were performed to learn the different conditions for the formation of arsenite and arsenate minerals (Pertlik, 1977).

Experimental. $\mathrm{PbCuAsO}_{4}$ is a product of the following chemical reaction: 2 g of an equimolar mixture of PbO , CuO , and $\mathrm{As}_{2} \mathrm{O}_{3}$ were placed in a 'Teflon'-coated vessel ($V \simeq 6000 \mathrm{~mm}^{3}$) and the vessel was filled to $\sim 80 \%$ of its volume with $1 M$ acetic acid. After heating for 4 d , © 1986 International Union of Crystallography
temperature 490 (5) K, crystals of the following compounds were found in the reaction mixture: $\mathrm{Cu}_{2} \mathrm{O}$ (cuprite), $\mathrm{CuAs}_{2} \mathrm{O}_{4}$ (trippkeite), and $\mathrm{PbCuAsO}_{4}$ (weight ratio $\simeq 1: 1: 5$). Crystal sizes of all three compounds are approximately $0.10 \mathrm{~mm}^{3}$. Grains of $\mathrm{PbCuAsO}_{4}$ are colourless, transparent, with high lustre. The atomic ratio of the elements Pb, As, and Cu was determined by electron-microprobe analysis, the oxidation state of the elements and the chemical formula by the crystal structure analysis. It is worth mentioning that for the formation of $\mathrm{PbCuAsO}_{4}$ crystals the following reactions took place: $\mathrm{Cu}^{\mathrm{II}}$ was reduced to Cu^{1} in combination with an oxidation of $\mathrm{As}^{\mathrm{III}}$ to As^{V}. Under the given conditions, $T \leq 500 \mathrm{~K}$, saturation vapour pressure, the formation of $\mathrm{PbCuAsO}_{4}$ from a mixture of $\mathrm{Cu}_{2} \mathrm{O}, \mathrm{PbO}$ and an As^{v} oxide solution was not successful with acetic acid or water as solvent.

X-ray work: Stoe AED 2 four-circle diffractometer, graphite-monochromatized Mo $K \alpha$ radiation, $2 \theta / \omega$ scan, min. step number 35 increased for (α_{1}, α_{2}) splitting, step width 0.03°, step time 0.5 to 1.5 s per step, data collection up to $2 \theta=60^{\circ}$; three standard reflections, no significant intensity variation. Crystal size: $0.114 \times 0.095 \times 0.019 \mathrm{~mm}$. Lattice parameters from 30 reflections up to $2 \theta=50^{\circ}$. Numerical absorption correction according to crystal shape (transmission factors from 0.250 to 0.412). 1326 measured reflections ($h:-7 \rightarrow 7, k:-8 \rightarrow 8, l:-1 \rightarrow 11$) were merged; 1142 unique data of which 103 are less than $3 \sigma\left(F_{o}\right)$. $R=0.030$ and $w R=0.026, w=1 /\left[\sigma\left(F_{o}\right)\right]^{2} ;$ max. $\Delta / \sigma<10^{-3}$; max. and min. heights in final difference Fourier map 1.79 and $-1.86 \mathrm{e} \AA^{-3} . g$ for isotropic secondary extinction (Zachariasen, 1967) is 4.88 (16) $\times 10^{-5}$.

Correction for Lorentz and polarization effects; complex scattering functions for neutral atoms (International Tables for X-ray Crystallography, 1974). All calculations were performed with the program system STRUCSY (Fa. Stoe \& Cie, Darmstadt). Structure solved by direct methods, which yielded the positions of the metal atoms. Subsequent Fourier synthesis showed the atomic coordinates of the O atoms. Several cycles of full-matrix least-squares refinements on F with anisotropic temperature parameters. Structure parameters are listed in Table 1.* Some important interatomic distances are summarized in Table 2.

Discussion. The Pb atom is irregularly [4+2] coordinated by six O atoms. Such an irregular coordination polyhedron is typical for the crystal-chemical behaviour

[^0]not only of divalent lead but also of all elements with a 'stereometric activity' of the lone-pair electrons (cf. for lead: Sahl, 1970). The next cation neighbour of the Pb atom is a Cu atom. The distance $\mathrm{Pb}-\mathrm{Cu}=3.325$ (1) \AA is in the same range as the sum of the metallic radii of these two elements and it seems therefore that it should not be considered a chemical bond. Worth mentioning is that two of the $\mathrm{O}-\mathrm{O}$ edges within the Pb coordination figure are very short $[O(2)-O(2)=2.74$ (1) and $\mathrm{O}(4)-\mathrm{O}(4)=2.77(1) \AA$, but both these atom pairs represent further common edges between two Pb coordination figures.

Table 1. Fractional atomic coordinates with e.s.d.'s in parentheses and equivalent isotropic temperature parameters (space group $P \overline{1}$, all atoms at general positions)

$U_{\text {eq }}=\left(B_{11}+B_{22}+B_{33}\right) / 3$.				
	x	y	z	$U_{\text {eq }}\left(\dot{\AA}^{2}\right)$
Pb	0.9387 (1)	0.7103 (1)	0.6760 (1)	0.014
Cu	0.6346 (3)	$0 \cdot 1969$ (2)	0.0043 (2)	0.021
As	0.4218 (2)	$0 \cdot 2030$ (1)	0.6866 (1)	0.011
O(1)	0.7672 (14)	0.0289 (12)	0.1919 (11)	0.019
O(2)	0.7313 (12)	0.0953 (11)	0.5642 (11)	0.015
O(3)	0.5091 (14)	0.6306 (11)	0.1787 (11)	0.021
O(4)	0.7762 (12)	0.6262 (10)	0.4391 (10)	0.013

Table 2. Some selected bond lengths (\AA) with e.s.d.'s in parentheses for $\mathrm{PbCuAsO}_{4}$

$\mathrm{Pb}-\mathrm{O}(2)$	$2.334(7)$	$\mathrm{Cu}-\mathrm{O}(1)$	$1.848(8)$
$\mathrm{Pb}-\mathrm{O}(4)$	$2.380(7)$	$\mathrm{Cu}-\mathrm{O}(3)$	$1.855(8)$
$\mathrm{Pb}-\mathrm{O}\left(2^{\prime}\right)$	$2.462(6)$	$\mathrm{As}-\mathrm{O}(1)$	$1.699(7)$
$\mathrm{Pb}-\mathrm{O}\left(4^{\prime}\right)$	$2.468(6)$	$\mathrm{As}-\mathrm{O}(2)$	$1.696(7)$
$\mathrm{Pb}-\mathrm{O}(1)$	$2.704(7)$	$\mathrm{As}-\mathrm{O}(3)$	$1.697(7)$
$\mathrm{Pb}-\mathrm{O}(3)$	$2.945(7)$	$\mathrm{As}-\mathrm{O}(4)$	$1.681(6)$

Fig. 1. Projection of the crystal structure of $\mathrm{PbCuAsO}_{4}$ on to (100). The short $\mathrm{O}-\mathrm{O}$ edges between the PbO_{6} coordination polyhedra are dotted lines $(\mathrm{O}-\mathrm{O}<2.8 \AA)$. The $\mathrm{Pb}-\mathrm{O}$ distances from 2.50 to $3.00 \AA$ are drawn as broken lines. The atoms are labelled with x.

The Cu atom has an almost linear [2] coordination by O atoms $\left[\mathrm{O}(1)-\mathrm{Cu}-\mathrm{O}(3)=178 \cdot 1(5)^{\circ}\right]$. Such a coordination is usual for monovalent Cu (cf. Wells, 1984). A comparable example is the structure of $\mathrm{Cu}_{2} \mathrm{O}$ with a symmetry-restricted linear [2] coordination and $\mathrm{Cu}-\mathrm{O}$ distances of $1.84 \AA$ (Eichhorn, Spilker \& Fischer, 1984).

The coordination polyhedron of the As atom is a tetrahedron, built up by four crystallographically different O atoms. As shown in Table 2, the four As-O distances are equal within two e.s.d.'s. Also the range of variation of the $\mathrm{O}-\mathrm{O}$ distances [2.71 (1) to 2.80 (1) \AA] within the AsO_{4} tetrahedron is small.

The PbO_{6} coordination polyhedra and the AsO_{4} tetrahedra are connected in two dimensions, resulting in a formal $\left[\mathrm{PbAsO}_{4}\right]$ sheet parallel to (001). These sheets are combined via strong $\mathrm{Cu}-\mathrm{O}$ bonds involving the monovalent Cu atom to form a network structure.

The main features of the atcmic arrangements are represented in Fig. 1.

This work was supported by the Hochschuljubiläumsstiftung der Stadt Wien.

References

Eichhorn, K., Spilker, J. \& Fischer, K. (1984). Acta Cryst. A40, C160.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Pertlik, F. (1977). Z. Anorg. Allg. Chem. 436, 201-206.
SAhl, K. (1970). In Handbook of Geochemistry, Vol. II-5, 82/A. Berlin, Heidelberg, New York: Springer.
Wells, A. F. (1984). Structural Inorganic Chemistry. Oxford: Clarendon Press.
Zachariasen, W. A. (1967), Acta Cryst. 23, 558-564.

Acta Cryst. (1986). C42, 776-780

Structure of Deuterated Triammonium Hydrogendisulfate, $\dagger\left(\mathbf{N D}_{4}\right)_{3} \mathbf{D}\left(\mathbf{S O}_{4}\right)_{2}$. Phases (III') and (VI)

By Masahiro Tanaka and Yoichi Shiozaki
Department of Physics, Faculty of Science, Hokkaido University, Sapporo 060, Japan

(Received 28 October 1985; accepted 27 January 1986)

Abstract

Phase (III'): $M_{r}=260 \cdot 3$, monoclinic, $P 2$, $a=10.087$ (2), $b=5.835$ (1), $c=15.542$ (2) $\AA, \beta=$ $101.71(2)^{\circ}, \quad V=895.7 \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.930 \mathrm{Mg} \mathrm{m}^{-3}$, Mo $K \alpha, \lambda=0.7107 \AA, \mu=0.60 \mathrm{~mm}^{-1}$, $F(000)=521 \cdot 84, T=189 \pm 7 \mathrm{~K}, R=0.028$ for 2156 unique reflections. Phase (VI): triclinic, $P 1, a=$ $10 \cdot 123$ (1), $\quad b=5.846$ (1),$\quad c=15 \cdot 476$ (1) $\AA, \quad a=$ 89.98 (1), $\quad \beta=101.78$ (1), $\quad \gamma=90.01$ (1) ${ }^{\circ}, \quad V=$ $896.6 \AA^{3}, Z=4, \quad D_{x}=1.928 \mathrm{Mg} \mathrm{m}^{-3}$, Мо $K \alpha, \lambda=$ $0.7107 \AA, \mu=0.60 \mathrm{~mm}^{-1}, F(000)=521.84, T=233$ $\pm 7 \mathrm{~K}, R=0.035$ for 4367 unique reflections. The structures in phases (III') and (VI) have pseudo P2/c symmetry. It has been found that the ferroelectric polarization observed in phase (VI) is mainly caused by the arrangement of the distorted SO_{4}^{2-} ions. The polarization along \mathbf{c}^{*} is expected to be easily reversed by slightly changing the SO_{4}^{2-} geometries.

Introduction. Triammonium hydrogendisulfate, $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{H}\left(\mathrm{SO}_{4}\right)_{2}$, at 0.1 MPa shows successive phase transitions and has six phases (I), (II), (III), (IV), (V),

[^1](VII) (Gossner, 1904; Fischer, 1914; Gesi, 1976a; Gesi \& Ozawa, 1977; Suzuki, 1979; Suzuki, Oshino, Gesi \& Makita, 1979; Gesi, 1980); phase (VII) shows ferroelectricity (Gesi, 1980). Another ferroelectric phase, (VI), exists at a hydrostatic pressure higher than about 500 MPa (Gesi, 1976b).

The deuterated crystal also exhibits complicated successive phase transitions; the six isostructural phases at 0.1 MPa are designated (I), (II), (III), (VI), (III') and (VII) with descending temperature (Osaka, Makita \& Gesi, 1977; Gesi, Ozawa, Osaka \& Makita, 1980). The ferroelectric phase (VI) appears at 0.1 MPa , showing an isotope effect. Recently, phases (IX) and (VIII) were found at hydrostatic pressures higher than about 300 MPa and about 450 MPa (Osaka, Makita \& Gesi, 1980).

Gesi (1977) suggested that the modified Mitsui (1958) model was effective for explaining the dielectric behaviour of $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{H}\left(\mathrm{SO}_{4}\right)_{2}$. However, the details of the phase transitions and the origin of the spontaneous polarization are not explained well. The $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, which link neighbouring SO_{4}^{2-} ions, are influenced by deuteration; the $\mathbf{O} \cdots \mathrm{O}$ bond length is

[^0]: * Lists of structure and thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 42844 (14 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: $\dagger \operatorname{Tri}\left({ }^{2} \mathrm{H}_{4}\right)$ ammonium deuteriumbis(sulfate).

